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Exact solitary waves of a nonlinear network equation
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We show by using the real exponential approach that the well-known discrete modified Korteweg—de Vries
equation and nonlinear network equations have more general exact soliton solutions than the known bright
soliton and kink solutions. Depending on the values of the parameters, the new solutions can describe a series
of bright solitons, dark solitons, and kink solitori§1063-651X98)12406-9

PACS numbd(s): 03.40.Kf

Recently much work have been done to investigate théut also a series of new superbright, gray, black, and other
effects of discreteness on the dynamics and physical propetypes of solitary waves, which, to our knowledge, have not
ties of solitong1,2]. In these investigations, integrable non- been given by other methods.
linear lattice modelgToda lattice, lattice nonlinear Schro The real exponential method to find the soliton solutions
dinger equation, and so pmave played an important role of nonlinear evolution and wave equations has been pro-
since it is easy to obtain analytical results. In the presenposed by Korpe[4] and developed by Heremast al. [5].
paper we consider a nonlinear electrical lattice, i.e., the nonRecently we have successfully applied the real exponential
linear self-dual network. The nonlinear self-dual network ismethod to a number of integrable and nonintegrable discrete
one of the typical integrable nonlinear lattice systems and ihonlinear evolution and wave equations and found more gen-
describes the propagation of electrical signals in a cascade efal or new solitary wave solutions of these equatidfisSo

four-terminal nonlinear LC self-dual circuitsee Fig. 1[3]. in the present paper we use the real exponential method to
The nonlinear self-dual network equations read investigate the nonlinear self-dual network.
The form of the nonlinear self-dual network is similar to
\'/].:(1.4_ ijZ)(|j_|j+l), (1)  the discrete modified Korteweg—de Vri¢gBMKdV) equa-

tion[8]. In fact, we will show that the soliton solutions of the
nonlinear self-dual network have the same functional forms
as those of the DMKdV equation. So we first consider the
relatively simple DMKdV equation.

(1) DMKdV equation The DMKdV equation has the form

=1+ 1) (Vj_1—V)), )

wherey==*1, andV; andl; are the voltage and current in
the jth capacitance and inductance of the network, respe 8]
tively. The network equations are integrable. By using th
inverse scattering method, the Hirota method, the Backlund
transformation, and so on, we can show that they have the
standard bright soliton solutions:

U= (1+ yud) (Uj 11— Uj_1), @)

where the dot denotes the derivative with respect to time.
The standard solutions of the DMKdV equation are the

Vj=sinh(K/2)/coshK(j —jo) — wt], 3 bright soliton
I;=—sinh(K/2)/coshK(j —jo—1/2) — wt], 4 u;=sinh(K)sechi(K(j —jo) — wt)], (8)
w=—2sinHK/2) w=—2sin(K)
for y=+1 and kink solutions for y=+1 and kink soliton 6]
V;=tanhK/4)tanh (K/2)(j — jo) — wt], (5 u;=tanhK/2)tanH (K/2)(j — jo) — wt], 9
I;=—tanh(K/4)tanH (K/2)(j—jo— 1)~ wt], (6) o=—2tanK/2)
w=—2tankK/4) for y=—1. We will show that these solutions are the special

cases of more general soliton solutions. In the real exponen-
for y=—1. In the present paper we show by using the reapal approach, the solution of a nonlinear equation is repre-

exponential method that the nonlinear self-dual networksented as a series in the real exponential solution of the lin-

equations have more general exact soliton solutions that in@arlzed equatiofd—7], i.e., we expandy; in a power series

clude not only the known standard bright solitons and kinksOf the form

oo

ui=2, a.g’, 10
* Author to whom correspondence should be addressed. ! nZO n9j (10
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A' ' A ﬁ ; FIG. 1. A nonlinear self-dual network with

nonlinear inductancé and capacitanc€ given

_ _ _ by  L(I)=I"tan (1) and  C(V))
¢ 72—’ ¢ 72—’ € 721 =V, tan'(V)) or L(I))=I;tanh *(l}) and

C(V))=V; ‘tani (V)), respectively.

wherea,, is the expansion coefficient and
gi=exdg —K(j—jo) +wt], K>0

with K, w, andjq being constants. Our task now is to find
the analytical form ofa,. This can be done by using sym-
bolic manipulation programgMATHEMATICA, MAPLE, RE-
DUCE and the likg. In the following, we study the DMKdV
equation fory=+1 andy=—1, respectively.

(i) y=+1. In this case, the DMKdV equation becomes

uj:(1+uj2)(uj+l_ujfl)- (11

Substituting Eq(10) into Eg. (11) and equating the coeffi-
cients ofg]', we find

w=—2(1+ad)sinhK), 12
a, = arbitrary constant,

2sa’
2(1+a2)sinh(K)’

ar=

_ (38°-1)a;
a3_[2(1+ag)sinr(r<)]2’
B 4s(s?—1)af
4= [2(1+a2)sinh(K)]®’
(1-10s%+5s% a3
a5: 2\ - 4
[2(1+ag)sinh(K)]

etc., wheres=agy/tanhK/2). It is not easy to see directly
from the sequence above whetlzgrhas a common expres-
sion but we found after some tries that it does have one that
can be written as

(s (s—1)" al

" 2 [—2(1+a2)sinh(K)]" 2’

(13)

wherel=+/—1 is the imaginary unit. Having the common
expression oé,, we can obtain a closed form of from Eq.
(20):

2(1+u?)sinh(K)

(14)

Uj:U

whereu.,=a, is the boundary value af; whenj approaches
+o anda; has been chosen to be

a;=—2(1+u?)sinhK).

It is easy to check that Eq14) is an exact solution of Eq.
(11). It is noted that, ifu; is a solution of Eq.(11), so is
—Uu;.

i
Equation(14) is a general solution of the DMKdV equa-

tion (11) and the known bright soliton solution is its special

case when the boundary valug=0. In the general case, the
solution(14) has two controlling parametets, andK while

the known bright solitary wave solution has only one. The az=
general solution can represent soliton solutions with different

boundary (backgroungl values u,, and their widths and

OO+ 1
2u..coth(K/2) +{[ 1+ uZcotif(K/2)]g; +g; '}

Substituting Eq.(10) into Eqg. (11) and equating the coeffi-
cients ofg;', we find

w=—2(1-ad)sinhK),
a, = arbitrary constant,

2
2sa)

B (1—a2)sinhK)’ s

- (1+3s?)a’
[2(1—a3)sinh(K)]?

. i 4
heights become narrow and large, respectively, as the values 4s(1+s%)a)

of u,, go from positive to negative for givel. This can be
clearly seen from Fig. 2.
(i) y=—1. In this case, Eq.7) becomes

uj:(l_ujz)(ujJrl_ujfl)- (15

21— ad)sinnK) ¥

(1+10s°+3s%a
[2(1—ad)sinh(K)]*

ag=
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u(J)

FIG. 2. Shapes; of the solitary waves$Eq.
(14)] of the DMKdV equation withK=1.0 and
different boundary value§from top to bottony:
u.=1.5,0.8,0.0-0.6, and—1.0.

etc., wheres=a,/tanh/2). We find that the common ex- (2) Nonlinear Self-Dual Networkdaving obtained the so-
pression ofa, can be written as in this case lutions of the DMKdV equation, we consider the nonlinear
self-dual network equatiofl). Now we must expand bot¥;
n n n . .
_(s+1)"—(s—1) (—a) (17  @ndl; in power series of the form
" 2 [2(1-ad)sinh(K)]"*
Then we find from Eq(10) V= 20 ang;, (19
i
2(1—u?)sinh(K)
e L coth K/2) +{[U2cott?(K/2)— 1]g + g ° S o
U.coth( {[uzcothr(K/2) —1]g;+g; ~} = bag!, (20)
(19 n=0
whereu..=a, anda, has been chosen to be wherea,, andb,, are the expansion coefficients. In the fol-

lowing, we setag= —by ands=a,/tanhK/4).
(i) y=+1. In the same way as for the DMKdV equation,

Equation(18) is a general solution of the DMKdV equa- We find the expansion coefficients, andb, to be
tion (15 and the known kink solution can be obtained by
settingu..=tanh/2). In the general case, the general solu- w=—2(1+ad)sinh(K/2), (21)
tion can represent bright and dark soliton solutions with dif-
ferent boundary(backgroungl values. This can be clearly (s+1)"—(s—1)" al
seen from Fig. 3. When,,>tanh/2), Eq.(18) gives kink- n= o —,
antikink pairlike solitary waves, black solitary wavdark 2l [—2(1+ag)sin(K/2)]"~*
solitons with the value of the bottom being zgrgray soli- (22
tary waves(hole solitong, and superbright solitary waves
(bright solitary waves on positive backgrounds b,=—exp(nK/2)a,. (23

a;=2(1—u?)sinh(K).

u(3)

FIG. 3. Shapes; of the solitary waves$Eq.
(18)] of the DMKdV equation withK=1.0 and
different boundary values whgrapproaches-oo
(from top to bottonm: u.,=1.478 (super-bright

os b soliton), 0.693(gray solitor), 0.522 (black soli-
ton), 0.474 (kink-antikink-pairlike soliton and
tanh(1.0)(kink).
=T 5 s Tl

10 J
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It is clear that the form o#,, is the same as E@13) except thaK is replaced byK/2. From Eqgs(19) and(20) we find

2(1+a)sinhK/2)
Vit o, coth(K/4)+{[ 1+ a2cot(K/4)]g;+g 1}’ 9
0 0 gj+gj }
2(1+a2)sinh(K/2
——a (1+ag)sinh(K/2) (25

°" 2ac0th(K/4) +{[ 1+ aZcottf( K/4)]g;e?+g; e K13

The solutions(24) and (25) have the same form as the soluti@¥) of the dark DMKdV equation and so also represent
different kinds of solitary wavegFig. 2). It is also clear that th¥/; has the same functional form gsexcept a position shift
by K/2. Foray=0, we obtain the known bright soliton soluti¢8) and (4).

(i) y=—1. Similarly, we find the expansion coefficierstg andb,, to be

w=—2(1-ad)sinhK/2), (26)
(s+1)"—(s—1)" aj
- 2
" 2 [2(1—ad)sinh(K/2)]" 1 @7
b,=—exp(nK/2)a,. (29

It is also clear that the form dd,, is the same as Eq17) except thaK is replaced byK/2. Then, we find

2(1—a3)sinh(K/2)
° 2agcothK/4)+ {[afcott?(K/4)—1]g;+g; '} ’

j (29

2(1-a3)sinhK/2)

I = —an+ .
°" 2agcoth(K/4) +{[ aZcoth?(K/4) — 1]g;e"2+g; e ™3

J

(30

The solutiong29) and (30) have the same form as the solu- propagation in a one-dimensional nonlinear dispersive sys-
tions of Eq.(15) and so also represent superbright solitarytem and have been used to study the properties of solitons on
waves, gray solitary waves, black solitary wave, and kink-attices[9,2]. They also have a range of applications, includ-
antikink pairlike solitary waves and kink solitor{§ig. 3.  ing their use in sampling oscilloscopes, network analyzers,
Whena,=tanh(/4), we obtain the kink soliton€) and(6).  Pulse compression devices, and sd 0. We hope that the

The results above show that the nonlinear self-dual neSClitary wave solutions given in the present paper can have
works can support the richness of nonlinear waves, whic/foMe Practical applications.

include various bright and dark solitary waves. Nonlinear  This work was supported by the National Natural Science
electrical lattices are very convenient tools to study the wavé&oundation(Grant No. 39470180
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