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Exact solitary waves of a nonlinear network equation

Wen Zhang, Yanzhao Huang, and Yi Xiao*

Physics Department, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
~Received 5 August 1997; revised manuscript received 6 March 1998!

We show by using the real exponential approach that the well-known discrete modified Korteweg–de Vries
equation and nonlinear network equations have more general exact soliton solutions than the known bright
soliton and kink solutions. Depending on the values of the parameters, the new solutions can describe a series
of bright solitons, dark solitons, and kink solitons.@S1063-651X~98!12406-6#

PACS number~s!: 03.40.Kf
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Recently much work have been done to investigate
effects of discreteness on the dynamics and physical pro
ties of solitons@1,2#. In these investigations, integrable no
linear lattice models~Toda lattice, lattice nonlinear Schro¨-
dinger equation, and so on! have played an important rol
since it is easy to obtain analytical results. In the pres
paper we consider a nonlinear electrical lattice, i.e., the n
linear self-dual network. The nonlinear self-dual network
one of the typical integrable nonlinear lattice systems an
describes the propagation of electrical signals in a cascad
four-terminal nonlinear LC self-dual circuits~see Fig. 1! @3#.
The nonlinear self-dual network equations read

V̇j5~11gVj
2!~ I j2I j 11!, ~1!

İ j5~11gI j
2!~Vj 212Vj !, ~2!

whereg561, andVj and I j are the voltage and current i
the j th capacitance and inductance of the network, resp
tively. The network equations are integrable. By using
inverse scattering method, the Hirota method, the Backl
transformation, and so on, we can show that they have
standard bright soliton solutions:

Vj5sinh~K/2!/cosh@K~ j 2 j 0!2vt#, ~3!

I j52sinh~K/2!/cosh@K~ j 2 j 021/2!2vt#, ~4!

v522sinh~K/2!

for g511 and kink solutions

Vj5tanh~K/4!tanh@~K/2!~ j 2 j 0!2vt#, ~5!

I j52tanh~K/4!tanh@~K/2!~ j 2 j 021!2vt#, ~6!

v522tanh~K/4!

for g521. In the present paper we show by using the r
exponential method that the nonlinear self-dual netw
equations have more general exact soliton solutions tha
clude not only the known standard bright solitons and kin

*Author to whom correspondence should be addressed.
571063-651X/98/57~6!/7358~4!/$15.00
e
r-

nt
n-

it
of

c-
e
d
e

l
k
n-
s

but also a series of new superbright, gray, black, and o
types of solitary waves, which, to our knowledge, have n
been given by other methods.

The real exponential method to find the soliton solutio
of nonlinear evolution and wave equations has been p
posed by Korpel@4# and developed by Heremanet al. @5#.
Recently we have successfully applied the real exponen
method to a number of integrable and nonintegrable disc
nonlinear evolution and wave equations and found more g
eral or new solitary wave solutions of these equations@7#. So
in the present paper we use the real exponential metho
investigate the nonlinear self-dual network.

The form of the nonlinear self-dual network is similar
the discrete modified Korteweg–de Vries~DMKdV ! equa-
tion @8#. In fact, we will show that the soliton solutions of th
nonlinear self-dual network have the same functional for
as those of the DMKdV equation. So we first consider t
relatively simple DMKdV equation.

~1! DMKdV equation. The DMKdV equation has the form
@8#

u̇ j5~11guj
2!~uj 112uj 21!, ~7!

where the dot denotes the derivative with respect to tim
The standard solutions of the DMKdV equation are t
bright soliton

uj5sinh~K !sech@„K~ j 2 j 0!2vt…#, ~8!

v522 sinh~K !

for g511 and kink soliton@6#

uj5tanh~K/2!tanh@~K/2!~ j 2 j 0!2vt#, ~9!

v522tanh~K/2!

for g521. We will show that these solutions are the spec
cases of more general soliton solutions. In the real expon
tial approach, the solution of a nonlinear equation is rep
sented as a series in the real exponential solution of the
earized equation@4–7#, i.e., we expanduj in a power series
of the form

uj5 (
n50

`

angj
n , ~10!
7358 © 1998 The American Physical Society
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FIG. 1. A nonlinear self-dual network with
nonlinear inductanceL and capacitanceC given
by L(I j )5I j

21tan21(I j ) and C(Vj )
5Vj

21tan21(Vj ) or L(I j )5I j
21tanh21(I j) and

C(Vj )5Vj
21tanh21(Vj), respectively.
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wherean is the expansion coefficient and

gj5exp@2K~ j 2 j 0!1vt#, K.0

with K, v, and j 0 being constants. Our task now is to fin
the analytical form ofan . This can be done by using sym
bolic manipulation programs~MATHEMATICA , MAPLE, RE-

DUCE and the like!. In the following, we study the DMKdV
equation forg511 andg521, respectively.

~i! g511. In this case, the DMKdV equation become

u̇ j5~11uj
2!~uj 112uj 21!. ~11!

Substituting Eq.~10! into Eq. ~11! and equating the coeffi
cients ofgj

n , we find

v522~11a0
2!sinh~K !, ~12!

a15arbitrary constant,

a252
2sa1

2

2~11a0
2!sinh~K !

,

.

-
ial
e

he
en

lu
a35
~3s221!a1

3

@2~11a0
2!sinh~K !#2

,

a452
4s~s221!a1

4

@2~11a0
2!sinh~K !#3

,

a55
~1210s215s4!a1

5

@2~11a0
2!sinh~K !#4

,

etc., wheres5a0 /tanh(K/2). It is not easy to see directly
from the sequence above whetheran has a common expres
sion but we found after some tries that it does have one
can be written as

an5
~s1I !n2~s2I !n

2I

a1
n

@22~11a0
2!sinh~K !#n21

, ~13!

where I 5A21 is the imaginary unit. Having the commo
expression ofan , we can obtain a closed form ofuj from Eq.
~10!:
uj5u`1
2~11u`

2 !sinh~K !

2u`coth~K/2!1$@11u`
2 coth2~K/2!#gj1gj

21%
, ~14!
-
whereu`5a0 is the boundary value ofuj when j approaches
1` anda1 has been chosen to be

a1522~11u`
2 !sinh~K !.

It is easy to check that Eq.~14! is an exact solution of Eq
~11!. It is noted that, ifuj is a solution of Eq.~11!, so is
2uj .

Equation~14! is a general solution of the DMKdV equa
tion ~11! and the known bright soliton solution is its spec
case when the boundary valueu`50. In the general case, th
solution~14! has two controlling parametersu` andK while
the known bright solitary wave solution has only one. T
general solution can represent soliton solutions with differ
boundary ~background! values u` and their widths and
heights become narrow and large, respectively, as the va
of u` go from positive to negative for givenK. This can be
clearly seen from Fig. 2.

~ii ! g521. In this case, Eq.~7! becomes

u̇ j5~12uj
2!~uj 112uj 21!. ~15!
t

es

Substituting Eq.~10! into Eq. ~11! and equating the coeffi
cients ofgj

n , we find

v522~12a0
2!sinh~K !,

a15arbitrary constant,

a25
2sa1

2

2~12a0
2!sinh~K !

,

~16!

a352
~113s2!a1

3

@2~12a0
2!sinh~K !#2

,

a45
4s~11s2!a1

4

@2~12a0
2!sinh~K !#3

,

a552
~1110s213s4!a1

5

@2~12a0
2!sinh~K !#4

,
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FIG. 2. Shapesuj of the solitary waves@Eq.
~14!# of the DMKdV equation withK51.0 and
different boundary values~from top to bottom!:
u`51.5, 0.8, 0.0,20.6, and21.0.
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etc., wheres5a0 /tanh(K/2). We find that the common ex
pression ofan can be written as in this case

an5
~s11!n2~s21!n

2

~2a1!n

@2~12a0
2!sinh~K !#n21

~17!

Then we find from Eq.~10!

uj5u`2
2~12u`

2 !sinh~K !

2u`coth~K/2!1$@u`
2 coth2~K/2!21#gj1gj

21%
~18!

whereu`5a0 anda1 has been chosen to be

a152~12u`
2 !sinh~K !.

Equation~18! is a general solution of the DMKdV equa
tion ~15! and the known kink solution can be obtained
settingu`5tanh(K/2). In the general case, the general so
tion can represent bright and dark soliton solutions with d
ferent boundary~background! values. This can be clearl
seen from Fig. 3. Whenu`.tanh(K/2), Eq.~18! gives kink-
antikink pairlike solitary waves, black solitary wave~dark
solitons with the value of the bottom being zero!, gray soli-
tary waves~hole solitons!, and superbright solitary wave
~bright solitary waves on positive backgrounds!.
-
-

~2! Nonlinear Self-Dual Network. Having obtained the so
lutions of the DMKdV equation, we consider the nonline
self-dual network equation~1!. Now we must expand bothVj
and I j in power series of the form

Vj5 (
n50

`

angj
n , ~19!

I j5 (
n50

`

bngj
n , ~20!

wherean and bn are the expansion coefficients. In the fo
lowing, we seta052b0 ands5a0 /tanh(K/4).

~i! g511. In the same way as for the DMKdV equatio
we find the expansion coefficientsan andbn to be

v522~11a0
2!sinh~K/2!, ~21!

an5
~s1I !n2~s2I !n

2I

a1
n

@22~11a0
2!sinh~K/2!#n21

,

~22!

bn52exp~nK/2!an . ~23!
FIG. 3. Shapesuj of the solitary waves@Eq.
~18!# of the DMKdV equation withK51.0 and
different boundary values whenj approaches1`
~from top to bottom!: u`51.478 ~super-bright
soliton!, 0.693 ~gray soliton!, 0.522 ~black soli-
ton!, 0.474 ~kink-antikink-pairlike soliton! and
tanh(1.0)~kink!.
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It is clear that the form ofan is the same as Eq.~13! except thatK is replaced byK/2. From Eqs.~19! and ~20! we find

Vj5a01
2~11a0

2!sinh~K/2!

2a0coth~K/4!1$@11a0
2coth2~K/4!#gj1gj

21%
, ~24!

I j52a02
2~11a0

2!sinh~K/2!

2a0coth~K/4!1$@11a0
2coth2~K/4!#gje

K/21gj
21e2K/2%

. ~25!

The solutions~24! and ~25! have the same form as the solution~14! of the dark DMKdV equation and so also represe
different kinds of solitary waves~Fig. 2!. It is also clear that theVj has the same functional form asI j except a position shift
by K/2. Fora050, we obtain the known bright soliton solution~3! and ~4!.

~ii ! g521. Similarly, we find the expansion coefficientsan andbn to be

v522~12a0
2!sinh~K/2!, ~26!

an5
~s11!n2~s21!n

2

a1
n

@2~12a0
2!sinh~K/2!#n21

, ~27!

bn52exp~nK/2!an . ~28!

It is also clear that the form ofan is the same as Eq.~17! except thatK is replaced byK/2. Then, we find

Vj5a02
2~12a0

2!sinh~K/2!

2a0coth~K/4!1$@a0
2coth2~K/4!21#gj1gj

21%
, ~29!

I j52a01
2~12a0

2!sinh~K/2!

2a0coth~K/4!1$@a0
2coth2~K/4!21#gje

K/21gj
21e2K/2%

. ~30!
u-
ry
k

e
ic
a

av

ys-
s on
d-
rs,

ave

ce
The solutions~29! and~30! have the same form as the sol
tions of Eq.~15! and so also represent superbright solita
waves, gray solitary waves, black solitary wave, and kin
antikink pairlike solitary waves and kink solitons~Fig. 3!.
Whena05tanh(K/4), we obtain the kink solitons~5! and~6!.

The results above show that the nonlinear self-dual n
works can support the richness of nonlinear waves, wh
include various bright and dark solitary waves. Nonline
electrical lattices are very convenient tools to study the w
. E
-

t-
h
r
e

propagation in a one-dimensional nonlinear dispersive s
tem and have been used to study the properties of soliton
lattices@9,2#. They also have a range of applications, inclu
ing their use in sampling oscilloscopes, network analyze
pulse compression devices, and so on@10#. We hope that the
solitary wave solutions given in the present paper can h
some practical applications.
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